130 research outputs found

    Fermion condensation and super pivotal categories

    Get PDF
    We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases which contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions, and condensing pairs of physical and emergent fermions. There are two distinct types of objects in fermionic theories, which we call "m-type" and "q-type" particles. The endomorphism algebras of q-type particles are complex Clifford algebras, and they have no analogues in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations in fermionic topological phases. We then prove a series of results relating data in condensed theories to data in their parent theories; for example, if C\mathcal{C} is a modular tensor category containing a fermion, then the tube category of the condensed theory satisfies Tube(C/ψ)C×(C/ψ)\textbf{Tube}(\mathcal{C}/\psi) \cong \mathcal{C} \times (\mathcal{C}/\psi). We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce fermionic topological phases: we condense fermions in the Ising theory, the SO(3)6SO(3)_6 theory, and the 12E6\frac{1}{2}\text{E}_6 theory, and compute the quasiparticle excitation spectrum in each of these examples.Comment: 161 pages; v2: corrected typos (including 18 instances of "the the") and added some reference

    Foliated Field Theory and String-Membrane-Net Condensation Picture of Fracton Order

    Get PDF
    Foliated fracton order is a qualitatively new kind of phase of matter. It is similar to topological order, but with the fundamental difference that a layered structure, referred to as a foliation, plays an essential role and determines the mobility restrictions of the topological excitations. In this work, we introduce a new kind of field theory to describe these phases: a foliated field theory. We also introduce a new lattice model and string-membrane-net condensation picture of these phases, which is analogous to the string-net condensation picture of topological order.Comment: 22+15 pages, 8 figures; v3 added a summary of our model near the end of the introductio

    Topological Defects on the Lattice I: The Ising model

    Get PDF
    In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.Comment: 45 pages, 9 figure

    Interaction effects in superconductor/quantum spin Hall devices: universal transport signatures and fractional Coulomb blockade

    Get PDF
    Interfacing s-wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly 1D systems. With the aim of establishing sharp fingerprints of this novel phase, we use renormalization group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here we predict e-periodic Coulomb-blockade peaks, as recently observed in nanowire devices [Albrecht et al., Nature 531, 206 (2016)], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e/2. These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.Comment: 18 pages, 7 figure

    Approaching a topological phase transition in Majorana nanowires

    Get PDF
    Recent experiments have produced mounting evidence of Majorana zero modes in nanowire-superconductor hybrids. Signatures of an expected topological phase transition accompanying the onset of these modes nevertheless remain elusive. We investigate a fundamental question concerning this issue: Do well-formed Majorana modes necessarily entail a sharp phase transition in these setups? Assuming reasonable parameters, we argue that finite-size effects can dramatically smooth this putative transition into a crossover, even in systems large enough to support well-localized Majorana modes. We propose overcoming such finite-size effects by examining the behavior of low-lying excited states through tunneling spectroscopy. In particular, the excited-state energies exhibit characteristic field and density dependence, and scaling with system size, that expose an approaching topological phase transition. We suggest several experiments for extracting the predicted behavior. As a useful byproduct, the protocols also allow one to measure the wire's spin-orbit coupling directly in its superconducting environment.Comment: 13 pages, 8 figure

    Torsorial actions on G-crossed braided tensor categories

    Full text link
    We develop a method for generating the complete set of basic data under the torsorial actions of H[ρ]2(G,A)H^2_{[\rho]}(G,\mathcal{A}) and H3(G,U(1))H^3(G,\text{U}(1)) on a GG-crossed braided tensor category CG×\mathcal{C}_G^\times, where A\mathcal{A} is the set of invertible simple objects in the braided tensor category C\mathcal{C}. When C\mathcal{C} is a modular tensor category, the H[ρ]2(G,A)H^2_{[\rho]}(G,\mathcal{A}) and H3(G,U(1))H^3(G,\text{U}(1)) torsorial action gives a complete generation of possible GG-crossed extensions, and hence provides a classification. This torsorial classification can be (partially) collapsed by relabeling equivalences that appear when computing the set of GG-crossed braided extensions of C\mathcal{C}. The torsor method presented here reduces these redundancies by systematizing relabelings by A\mathcal{A}-valued 11-cochains. We also use our methods to compute the composition rule of these torsor functors.Comment: 34 pages, several figures; v2: added Sec V, VI, and minor correction

    Super Pivotal Categories, Fermion Condensation, and Fermionic Topological Phases

    Get PDF
    We describe a systematic way of producing fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases which contain an emergent fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions, and condensing pairs of physical and emergent fermions. There are two distinct types of objects in fermionic theories, which we call &#8220;m-type&#8221; and &#8220;q-type&#8221; particles. The endomorphism algebras of q-type particles are complex Clifford algebras, and they have no analogues in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations in fermionic topological phases. We then prove a series of results relating data in condensed theories to data in their parent theories; for example, if C is a modular tensor category containing a fermion, then the tube category of the condensed theory satisfies Tube(C/&#968;) &#8773; C &#215; C/&#968;. We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum.</p

    Church networks, peacebuilding and women’s participation in Eastern DRC and the Great Lakes Region – a mapping study

    Get PDF
    This report (i) map the religious civil society networks, (ii) assess their role in local and regional peace processes and (iii) address the organisation of women and the promotion of issues of women, peace and security within these networks. The focus in this report is on the linkages between provincial centres and churches at village level in the vast rural areas of the Kivus where civilians continue to suffer from war crimes. The legitimacy of the church in peacebuilding at local and national levels hinges on the assumption that (i) the church leadership has a mandate based in their constituency on the ground, and that (ii) church coordinating structures in the province or at the national level have the capacity to coordinate church activities at lower levels of the church hierarchy.publishedVersio
    corecore